Comparison Inequalities and Fastest-Mixing Markov Chains

Jim Fill, Johns Hopkins University

We introduce a new partial order on the class of stochastically monotone Markov kernels having a given stationary distribution π on a given finite partially ordered state space \mathcal{X} . When $K \leq L$ in this partial order we say that K and L satisfy a comparison inequality. We establish that if K_1, \ldots, K_t and L_1, \ldots, L_t are reversible and $K_s \leq L_s$ for $s = 1, \ldots, t$, then $K_1 \cdots K_t \leq L_1 \cdots L_t$. In particular, in the time-homogeneous case we have $K^t \leq L^t$ for every t if K and L are reversible and $K \leq L$, and using this we show that (for suitable common initial distributions) the Markov chain Y with kernel K mixes faster than the chain Z with kernel L, in the strong sense that at every time t the discrepancy—measured by total variation distance or separation or L^2 -distance—between the law of Y_t and π is smaller than that between the law of Z_t and π .

Using comparison inequalities together with specialized arguments to remove the stochastic monotonicity restriction, we answer a question of Persi Diaconis by showing that, among all symmetric birth-and-death kernels on the path $\mathcal{X} = \{0, \dots, n\}$, the one (we call it the uniform chain) that produces fastest convergence from initial state 0 to the uniform distribution has transition probability 1/2 in each direction along each edge of the path, with holding probability 1/2 at each endpoint.

We also use comparison inequalities

- (i) to identify, when π is a given log-concave distribution on the path, the fastestmixing stochastically monotone birth-and-death chain started at 0, and
- (ii) to recover and extend a result of Peres and Winkler that extra updates do not delay mixing for monotone spin systems.

Among the fastest-mixing chains in (i), we show that the chain for uniform π is slowest in the sense of maximizing separation at every time.

(This is joint work with Jonas Kahn of University of Lille in France.)